In situ, oxide interference corrected Rb-Sr data of meteorite samples using LA-MC-ICP-MS/MS

Miles Lindner*, Timo Hopp, Thorsten Kleine *Max Planck Institute for Solar System Research, Justusvon-Liebig-Weg 3, 37077 Göttingen, Germany lindnerm@mps.mpg.de.

The ⁸⁷Rb-⁸⁷Sr system is a versatile chronological tool and geochemical tracer. Unlike Rb-Sr measurements by thermal ionization mass spectrometry, in situ laser ablation (LA) mass spectrometry offers high sample throughput and minimizes sample destruction. This method, however, is compromised by the presence of multiple isobaric interferences on Sr isotopes. This problem can be overcome using multi-collector inductively-coupled-plasma mass spectrometers (MC-ICP-MS) equipped with the recently developed pre-cell mass filter and collision/reaction cell (CRC), such as the Thermo ScientificTM NeomaTM MS/MS-MC-ICP-MS. This instrument allows simultaneous measurements of on-mass and massshifted Rb and Sr isotopes using SF₆ reaction-gas, to react Sr to SrF, which is instead analyzed. Here we show, however, that for Y- and Zr-bearing phases, YO and ZrO molecules form and interfere with SrF measurements, when O₂/H₂O enters the CRC either from impurities in the reaction gas or molecules that formed in the plasma. A correction for these effects is presented, together with in situ Rb-Sr data from meteoritic samples, measured using above method.