Noble gases in CV chondrites – searching for effects of parent body processing.

Krietsch*, D., Busemann, H., Maden, C., *ETH Zurich, CH-8092 Zurich, daniela.krietsch@eaps.ethz.ch.

Carbonaceous chondrites (CC) of the Vigarano-type (CV) are particularly petrographically complex meteorites [1]. They are divided into three subgroups (CV_{Red}, CV_{OxA}, and CV_{OxB}) based on chemical and petrographic criteria [1,2]. The CVs experienced (comparably mild) parent body aqueous alteration and thermal metamorphism to variable degrees, spanning petrologic subtypes from 3.05-3.7 (e.g., [3,4]). Previous studies have shown that asteroidal secondary processes have correlated effects on the noble gas compositions of primitive CCs, such as CI, CY, CR, CM, and CO chondrites [5–8]. In this study, we look for (similar?) trends in the noble gas compositions of CVs allowing us to further constrain the complex (post-)accretion history of CVs and their initial noble gas inventory. To date, we analyzed the He-Xe in 22 CVs of variable subgroup and petrologic subtype. First results will be presented at the meeting. [1] McSween (1977) GCA 41, 1777-1790. [2] Weisberg, M.K. et al. (1997) MAPS 32, 138. [3] Bonal, L. et al. (2006) GCA 70, 1849–1863. [4] Righter, K. et al. (2023) MAPS 58, 25–40. [5] King, A.J. et al. (2019) Geochemistry 79, 125531. [6] Busemann, H. et al. (2021) 52rd LPSC, #2718. [7] Krietsch, D. et al. (2021) GCA 310, 240-280. [8] Eckart, L.M. et al. (2025) GCA 402,

104-133.