Potassium Isotopes in Iron Meteorites: Reassessing the Constancy of Galactic Cosmic Rays

F. Nozarian*, S. Timmerman, and I. Leya, *University of Bern, Physics Institute, Space Research and Planetary Sciences, Sidlerstrasse 5, 3012 Bern, Switzerland, farshid.nozarian@unibe.ch

Introduction: Cosmogenic potassium isotopes, particularly (40 K/ 41 K), provide a robust method for determining cosmic-ray exposure (CRE) ages of iron meteorites. The 40 K-K dating method, established over 50 years ago, has not produced new data since 1984, despite improvements in measurement techniques and a large amount of new meteorites. Comparisons of 40 K-K ages with 36 Cl- 36 Ar ages show systematic discrepancies, possibly indicating temporal variations in cosmic-ray flux. Our work re-establishes the 40 K-K dating system and improves cosmogenic potassium isotope measurements.

Experimental: Potassium was extracted from six iron meteorites. $(^{40}K)^{39}K)$ and $(^{41}K)^{39}K)$ ratios were measured using TIMS. The challenge is separating ppblevels of cosmogenic potassium from ppm-levels of native potassium. We conducted 31 procedural blanks and 22 standards, as well as measuring 27 meteorite aliquots.

Results: Despite dominant native potassium, a clear cosmogenic signal is detectable, particularly in ⁴⁰K. Reproducibility across aliquots of the same meteorite is good. Further improvements in separating native and cosmogenic potassium are ongoing. Model calculations of the ⁴⁰K/⁴¹K production rate ratio refine CRE age determinations. Preliminary results will be presented.