Rare-Earth element distribution in cross-cutting veins within a Bennu rock fragment

Tkalcec*, B.J., Baert, T., Herthogs, J., Libourel, G., Connolly, H.C., Lauretta, D. S., Vincze, L., Brenker, F.E. *Schwiete Cosmochemistry Lab, Goethe University, Frankfurt/M, tkalcec@em.uni-frankfurt.de.

We applied synchrotron X-ray fluorescence (SXRF) spectroscopy to analyse the distribution of rare-earth elements (REEs) in apatite-dolomite aggregates within two cross-cutting veins in rock fragment OREX-501079-0 from asteroid Bennu.

The REE results show a dichotomy between apatite (60-500 times CI) and dolomite (10-50 times CI) enrichment levels within the two veins. LREE-HREE fractionation patterns of the vein apatites are all similar, with a slight, gradual increase from Dy to Er and a clear increase from Er to Yb. A negative Ce anomaly, present in all of the Bennu vein apatites, may indicate a more oxidising environment within the veins, whereby Ce³⁺ was partly oxidised to Ce⁴⁺, leaving less Ce³⁺ available for incorporation into apatite. We compare the REE-enrichments of Bennu vein-apatites with those of non-vein apatites in other Bennu and Ryugu rock fragments.

This material is based on work supported by NASA. We thank the OSIRIS-Rex Team for the samples, DESY (Hamburg, Germany) and ESRF (Grenoble, France) for SXRF beamtime, and DFG for funding.